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StabilityOptimization ofPositive Semi-MarkovJumpLinear

SystemsviaConvexOptimization ?

Chengyan Zhao a, Masaki Ogura a, Kenji Sugimoto a

aDivision of Information Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan

Abstract

In this paper, we study the problem of optimizing the stability of positive semi-Markov jump linear systems. We specifically
consider the problem of tuning the coefficients of the system matrices for maximizing the exponential decay rate of the
system under a budget-constraint. By using a result from the matrix theory on the log-log convexity of the spectral radius
of nonnegative matrices, we show that the stability optimization problem reduces to a convex optimization problem under
certain regularity conditions on the system matrices and the cost function. We illustrate the validity and effectiveness of the
proposed results by using an example from the population biology.

Key words: Semi-Markov jump linear systems, positive systems, stability optimization, convex optimization, bet-hedging
population

1 Introduction

Markov jump linear systems (Costa et al. 2013) is an
important class of stochastic dynamical systems able to
model abrupt changes in system parameters, and has
applications in mobile robots (Bowling 2006), epidemic
processes (Ogura & Preciado 2016), and networked con-
trol systems (Hespanha et al. 2007). Several important
issues on Markov jump linear systems have been ad-
dressed in the literature, such as stability analysis, state
filtering, and feedback control (see, e.g., Shi & Li (2015)
and referenced therein). However, Markov jump linear
systems have a restriction that the sojourn times at each
mode must follow exponential distributions. This as-
sumption is not necessarily satisfied in practice; a typi-
cal example arises in the modeling of system failures in
the context of fault tolerant control systems, in which re-
alistic probability density functions of failure rates take
the bathtub shape that are well-explained by Weibull
distributions (Johnson 1989).

One natural way to overcome this limitation is to al-
low the sojourn times to follow non-exponential distri-
butions, which results in a broader class of stochastic

? This paper was not presented at any IFAC meeting. Cor-
responding author C. Zhao.

Email addresses: zhao.chengyan.za5@is.naist.jp
(Chengyan Zhao), oguram@is.naist.jp (Masaki Ogura),
kenji@is.naist.jp (Kenji Sugimoto).

dynamical systems called semi-Markov jump linear sys-
tems. In this context, we can find in the literature a great
amount of recent effort toward the analysis and control
of the class of systems. Schioler et al. (2014) have pre-
sented sufficient conditions for the moment stability of
semi-Markov jump linear systems. Huang & Shi (2012)
derived linear matrix inequalities (LMIs) for the robust
state-feedback control of semi-Markov jump linear sys-
tems. There are several LMI-based approaches for the
further advanced types of control of semi-Markov jump
linear systems (Chen et al. 2016, Wei et al. 2017, Jiang
et al. 2018, Shen et al. 2018, Yan et al. 2019). It is
worthwhile to remark that the generality of the class
of non-exponential distributions causes intrinsic difficul-
ties when studying semi-Markov jump linear systems.
For example, Zhang et al. (2017) showed that the mean
square stability of a discrete-time semi-Markov jump lin-
ear system is equivalent to the solvability of an infinite
system of LMIs, which is in great contrast with the case
of Markov jump linear systems (Costa et al. 2013). For
this reason, it has been left as an open problem to un-
derstand what control problems for semi-Markov jump
linear systems can be efficiently solved with a global op-
timality.

In this paper, we show that a class of budget-constrained
stabilization problem for positive semi-Markov jump lin-
ear systems can be optimally solved via standard con-
vex optimization. We specifically consider the problem
of tuning the coefficients of the system matrices under
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a budget-constraint for maximizing the exponential de-
cay rate of the system. By using the stability charac-
terization of positive semi-Markov jump linear systems
(Ogura & Martin 2014) and the log-log convexity result
on the spectral radius of nonnegative matrices (Kingman
1961), we show that the optimal stabilization problem
reduces to a convex optimization problem under certain
regularity conditions on the system matrices and the cost
function as well as the uniform boundedness of sojourn
times. We illustrate the validity and effectiveness of the
proposed results by using an example from population
biology (Kussell & Leibler 2005).

This paper is organized as follows. In Section 2, we
formulate the stabilization problem of positive semi-
Markov jump linear systems and state the main re-
sult. The derivation of the main result is presented in
Section 3. In Section 4, we illustrate the validity and
effectiveness of the result with numerical simulations.

Notations

Let (Ω,M, P ) be a probability space. The expected value
of a random variable X on Ω is denoted by E[X]. Let
R, R+, and R++ denote the set of real, nonnegative,
and positive numbers, respectively. Let Rn×n denote the
set of n × n matrices. The identity matrix of order n
is denoted by In. We say that a real vector x is non-
negative, denoted by x ≥ 0, if the entries of x are all
nonnegative. We say that a square matrix is Metzler if
the off-diagonal entries of the matrix A are nonnega-
tive. We denote the spectral radius of A by ρ(A). We
define the entrywise logarithm of a vector v ∈ Rn++ by

log[v] = [log v1, . . . , log vn]>. The entrywise exponential
operation exp[·] is defined in the same manner.

2 Main result

Let us consider a parameterized family of switched linear
systems of the form

Σθ :
dx

dt
= Aσ(t)(θ)x(t), x(0) = x0 ∈ Rn, (1)

where x(t) ∈ Rn is the state vector, σ is a piecewise-
constant function taking values in the set {1, . . . , N},
andA1(θ), . . . ,AN (θ) ∈ Rn×n are matrices parametrized
by the parameter θ belonging to a set Θ ⊂ R`. In this
paper, we specifically focus on the class of positive
semi-Markov jump linear systems defined as follows:

Definition 1 (Ogura & Martin (2014)) Let θ ∈ Θ.
We say that the system Σθ is a positive semi-Markov
jump linear system if x0 ∈ Rn+, the matrices A1(θ),
. . . , AN (θ) are Metzler, and σ is a semi-Markov process
taking values in {1, . . . , N} (Janssen & Manca 2006).

For t ≥ 0 and x0 ∈ Rn+, we let x(t;x0) denote the tra-
jectory of the system Σθ at time t and with the initial
condition x(0) = x0. This paper is concerned with the
stability property of the system Σθ given as follows:

Definition 2 Let θ ∈ Θ. The exponential decay rate of
the system Σθ is defined by

γθ = − sup
x0∈Rn+

lim sup
t→∞

logE[‖x(t;x0)‖]
t

.

In this paper, we consider a budget-constrained stability
optimization problem described as follows. Consider the
situation where a limited amount of resource available is
given for tuning the parameter θ to improve the stability
of the system Σθ. We let the real function C(θ) to denote
the cost for achieving a specific parameter θ. In this
context, we formulate our stability optimization problem
as follows:

Problem 3 (Budget-constrained stabilization)
Let a real number C̄ be given. Find the parameter θ ∈ Θ
such that the exponential decay rate γθ is maximized,
while the budget constraint C(θ) ≤ C̄ is satisfied.

To state our assumptions on the system matrices Ai(θ)
and the cost function C(θ), we introduce monomi-
als and posynomials (Boyd et al. 2007). We say that
a function F : Rn++ → R++ is a monomial if there
exist c > 0 and real numbers a1, . . . , an such that
F (v) = cva11 va22 · · · vann . Then, we say that a function F
is a posynomial if F is a sum of finite monomials.

Assumption 4 The following conditions hold true:

(1) For each k = 1, . . . , N , there exists an n × n
Metzler matrix Mk such that each entry of the ma-
trix Ak(θ)−Mk is either a posynomial in θ or zero.

(2) C(θ) is a posynomial in θ.
(3) There exist posynomials g1(θ), . . . , gm(θ) and pos-

itive constants ḡ1, . . . , ḡm such that

Θ = {θ ∈ R` : g1(θ) ≤ ḡ1, . . . , gm(θ) ≤ ḡm}.

(4) The sojourn times of the semi-Markov process σ are
uniformly bounded, i.e., there exists T > 0 such that
the sojourn times are less than or equal to T with
probability one.

To state the main result of this paper, we introduce the
following notations. Let σd be the embedded Markov
chain of σ (see, e.g., Janssen & Manca (2006)). For i, j ∈
{1, . . . , N}, let pij denote the transition probability of
σd, i.e., let pij denote the probability that the discrete-
time Markov chain σd transitions into state j from state i
in one time step. Also, let hij denote the random variable
representing the sojourn time of σ at the mode j after
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jumping from the mode i. The following theorem shows
that Problem 3 can be solved by convex optimization
and is the main result of this paper.

Theorem 1 Let C̄ > 0 be given. For each θ ∈ Θ and
g > 0, define A(θ, g) ∈ R(nN)×(nN) as the block matrix
whose (i, j)-block is defined by

[A(θ, g)]ij = pjiE[e(Aj(θ)+gI)hji ] ∈ Rn×n. (2)

Also, define the set log[Θ] = {log[θ] : θ ∈ Θ} ⊂ R`.
Then, the following optimization problem is convex:

minimize
u∈log[Θ], v∈R

− v (3a)

subject to log ρ(A(exp[u], ev)) ≤ 0, (3b)

logC(exp[u]) ≤ log C̄, (3c)

log gi(exp[u]) ≤ log ḡi,

i = 1, . . . , `. (3d)

Moreover, if u = u? solves the convex optimization prob-
lem (3), then θ = exp[u?] solves Problem 3.

3 Proof

In this section, we give the proof of Theorem 1. We first
prepare a few lemmas for the proof. The first lemma
gives a characterization of the exponential decay rate
of the system Σθ in terms of the spectral radius of the
matrix A(θ, g) defined in the theorem.

Lemma 5 Let θ ∈ Θ and g > 0 be arbitrary. The ex-
ponential decay rate of Σθ satisfies γθ > g if and only if
ρ(A(θ, g)) < 1.

PROOF. Assume γθ > g. Then, the positive semi-
Markov jump linear system dx/dt = (Aσ(t)(θ) + gI)x(t)
is exponentially mean stable. Therefore, by Theorem 2.5
in Ogura & Martin (2014), the matrixA(θ, g) has a spec-
tral radius less than one, as desired. The proof of the op-
posite direction can be proved in the same manner and,
therefore, is omitted.

We then recall the following celebrated result by King-
man (1961). We say that an R++-valued function f(x)
is superconvex if log f(x) is convex.

Lemma 6 (Kingman (1961)) Let A : R` → Rn×n+ be
a function. Assume that each entry ofA is either a super-
convex function or the zero function. Then, the mapping
R` → R++ : x 7→ ρ(A(x)) is superconvex.

We finally state the following lemma concerning the su-
perconvexity of posynomials.

Lemma 7 (Boyd et al. (2007)) Let f : Rn++ → R++

be a posynomial. Then, the mapping Rn → R++ : u 7→
f(exp[u]) is superconvex.

Let us now prove Theorem 1.

PROOF OF THEOREM 1 Lemma 5 shows that the
solution of Problem 3 is given by the following optimiza-
tion problem:

minimize
θ∈Θ, γ>0

1/γ

subject to ρ(A(θ, g)) ≤ 1,

C(θ) ≤ C̄,
gi(θ) ≤ ḡi, i = 1, . . . , `.

(4)

Performing the variable transformations u = log[θ]
and v = log g as well as taking logarithms in the objec-
tive functions and constraints, we can equivalently re-
duce (4) into the optimization problem (3). To complete
the proof, let us show the convexity of the optimiza-
tion problem (3). The convexity of the constraints (3c)
and (3d) is a direct consequence of the superconvexity
of posynomials stated in Lemma 7. We need to show
the convexity of the mapping

log[Θ]× R→ R : (u, v) 7→ log ρ(A(exp[u], ev)). (5)

For each k = 1, . . . , N , we define the matrix func-
tion Ãk(θ) = Ak(θ)−Mk+gI. Then, equation (2) shows

that [A(θ, g)]ij = pji
∫ T

0
e(Ãj(θ)+Mj)τfji(τ) dτ , where

fji denotes the probability density function of the so-
journ time hji. This equation and the Lie-product for-

mula eA+B = limK→∞(eA/KeB/K)K for square matri-
ces A and B (see, e.g., Cohen (1981)) yield that

[A(θ, g)]ij = pji

∫ T

0

lim
K→∞

(
e
τÃj(θ,g)

K e
τMj
K

)K
fji(τ) dτ

= lim
K,L→∞

Γ
(K,L)
ij (θ, g)

where, for positive integers K and L, the n × n ma-

trix Γ
(K,L)
ij (θ, g) is defined by

Γ
(K,L)
ij (θ, g) = pji

L∑
`=1

T

L

(
e
`TÃj(θ,g)

KL e
`TMj
KL

)K
fji(`T/L).

Therefore, if we define

Γ
(K,L,M)
ij (θ, g) =

pji

L∑
`=1

T

L

(
M∑
m=0

1

m!

(
`T Ãj(θ, g)

KL

)m
e
`TMj
KL

)K
fji

(
`T

L

)

3



then, by the definition of matrix exponentials, we obtain

[A(θ, g)]ij = lim
K,L,M→∞

Γ
(K,L,M)
ij (θ, g). (6)

We show that each entry of the matrix Γ
(K,L,M)
ij is ei-

ther a posynomial in θ and g or zero. Since the matrix
Mj is assumed to be Metzler (Assumption 4.1), the ma-

trix e`TΓj/KL is nonnegative for all K and L. Also, each
entry of the matrix Ã(θ, g) is either a posynomial or zero
by Assumption 4.1. Since the set of posynomials is closed
under additions and multiplications, each entry of the
matrix power (`T Ãj(θ, g)/KL)m is either a posynomial
of θ and g or zero as well. From the above observation,
we conclude that each entry of the matrix ΓK,L,M (θ, g)
is a posynomial with the variables θ and g or zero.

Now, define the (nN)× (nN) matrix A(K,L,M)(θ, g) as

the block matrix whose (i, j)-block equals Γ
(K,L,M)
ij (θ, g)

for all i, j ∈ {1, . . . , N}. Then, by Lemmas 6 and 7, the
mapping (u, v) 7→ ρ(A(K,L,M)(exp[u], ev)) is supercon-
vex. Since (6) shows that the mapping A is a point-wise
limit of the mapping A(K,L,M), taking a limit preserves
superconvexity, and the spectral radius operator ρ(·) is
continuous, we obtain the convexity of the mapping (5).
This completes the proof of convexity of the optimiza-
tion problem (3), as desired.

4 Numerical example

In this section, we illustrate the effectiveness of the main
result with an example that arises in the context of
population biology (Kussell & Leibler 2005). To survive
through time-varying environments caused by, e.g., tem-
perature shifts, day-night cycles, and pH shifts, organ-
isms often exhibit a variety of phenotypes. In this ex-
ample, we consider a biological community with n phe-
notypes living in a randomly fluctuating environment
with N possible environmental types. Let gik denote the
growth rate of phenotype i under environment k. In the
meantime, an individual having phenotype i transforms
itself to phenotype j at a constant rate which is repre-
sented by ωijk . Let xi(t) denote the size of population
having phenotype i at time t and σ(t) denote the envi-
ronment type at time t. Then, the growth of the popu-
lation with phenotype i is described (Kussell & Leibler
2005) as

Σ :
dxi
dt

= giσ(t)xi(t) +

n∑
j 6=i

ωjiσ(t)xj(t), (7)

where ωiik = −
∑n
j=1,j 6=i ω

ij
k .

Fig. 1. Three realizations of the doasge-performance func-
tion with the parameter ᾱ` = 1, θ` = 10, si` = 1 and
q` = 0.01, 25, 100.

Let us consider the problem of driving the entire popu-
lation into extinction through medical intervention. As-
sume that L different types of antibiotics are available
for suppressing growth rates. Let c`(α`) (` ∈ {1, . . . , L})
denote the cost for dosing α` unit of the `th antibiotics,
which is assumed to reduce the growth rate of the ith
phenotype population by ∆`g

i(α`) independent of the
current environment types. In this situation, we can re-
duce the growth rate of the ith phenotype population

to giσ(t) −
∑L
`=1 ∆`g

i(α`) with the associated total cost

C(α) =
∑L
`=1 c`(α`). The resulting population dynam-

ics admits the representation

Σ′ :
dxi
dt

=

(
giσ(t) −

L∑
`=1

∆`g
i(α`)

)
xi(t)+

n∑
j 6=i

ωjiσ(t)xj(t).

Let us allow the following box constraint

0 ≤ α` ≤ ᾱ` (8)

on the amount of doses. Under this scenario, we consider
the following optimal intervention problem:

Problem 8 (Optimal intervention problem) Let
C̄ be a positive constant. Assume that σ is a semi-Markov
process satisfying Assumption 4.4. Find the set of dose
amounts α = (α1, . . . , αL) to maximize the exponential
decay rate of the system Σ′ while satisfying

C(α) ≤ C̄. (9)

In this numerical example, we assume that the cost for
antibiotics is linear with their dose amount, i.e., we let
c`(α`) = r`α` for a constant r` > 0 for all `. As for the
suppression ∆`g

i(α`) of the growth rates, we adopt the
increasing function

∆`g
i(α`) = si`¯

θ−q`` − (α` +
¯
θ`)
−q`

¯
θ−q`` − (ᾱ` +

¯
θ`)−q`

4



Fig. 2. The optimal spectral radius versus s11. Circles:
c1 = 0.2, triangles: c1 = 0.5, squares: c1 = 1.

where
¯
θ` > 0, si` ≥ 0, and q` > 0 are parameters. These

parameters allow us to realize various shapes of the sup-
pression functions, including the dose-proportional sup-
pression illustrated in Fig. 1. We notice that the zero dose
of the `th antibiotic does not change the growth rate,
i.e., ∆`g

i(α`)(0) = 0, while the maximum dose achieves
∆`g

i(ᾱ`) = si`.

Let us show that the optimal intervention problem re-
duces to Problem 3. We introduce an auxiliary variable
θ` =

¯
θ` + α` that is to be optimized. If we define θ̄` =

¯
θ` + ᾱ`, then the constraint (8) is rewritten as the block
constraint

¯
θ` ≤ θ` ≤ θ̄`, which can be expressed using

posyonmial functions (Preciado et al. 2014). Therefore,
Assumption 4.3 is satisfied. Let us define the variable θ =
(θ1, . . . , θL). Then, we can rewrite the system Σ′ into
the form (1), where the matrices A1(θ), . . . , AN (θ) are

defined by [Ak(θ)]ii = g̃ik +
∑L
`=1 s

i
`(¯
θ−q`` − θ̄−q`` )−1θ−q``

with g̃ik = gik − ωiik −
∑L
`=1 s

i
`¯
θ−q`` /(

¯
θ−q`` − θ̄−q`` ), and

[Ak(θ)]ij = ωijk for i 6= j. Therefore, if we define the
diagonal matrix Mk = diag(g̃1

k, . . . , g̃
n
k ), then each en-

try of the matrix Ak(θ) − Mk is a posynomial in the
variables θ or zero. Hence, Assumption 4.1 is satisfied.
Furthermore, the cost constraint (9) can be rewritten as∑L
`=1 r`θ` ≤ C̄ +

∑L
`=1 r`¯

θ` in terms of posynomials of
the variable θ. Since all the conditions in Assumption 4
are satisfied, the optimal intervention problem can be ef-
ficiently solved by convex optimization as shown in The-
orem 1.

For simplicity of presentation, we focus on the case of
n = N = 2 in this numerical example. Throughout the
simulation, we fix a part of the parameters as follows:
ω21

1 = ω12
1 = 0.1, ω21

2 = ω12
2 = 0.5, g1

1 = 1, g2
1 = −0.1,

g1
2 = −1, g2

2 = 0.1, ᾱ1 = ᾱ2 = 1,
¯
θ1 =

¯
θ2 = 10, q1 =

q2 = 0.01, s2
1 = 0.4, s1

2 = 1, s2
2 = 0.4, and c2 = 1.

Also, we assume that the environment keeps switching
from one to another, and that the sojourn time of each
environment follows the log-normal distribution having

Fig. 3. 10 realizations of log x1(t) before and after antibiotic
intervention. Black line: ρ(A) = 6.28. Blue line: ρ(A) = 0.55.

0

1

Fig. 4. The ratio of the resource allocated on phenotype 2
versus µ21 ∈ [0.01, 2] and σ21 ∈ [0.01, 2].

the probability density function

f(t) =

{
γij

1
xσij
√

2π
e−(ln x−µij)2/(2σ2

ij) 0 < t ≤ T,
0, otherwise.

We truncate this density function at a finite time T to
satisfy Assumption 4.4, and γij is the constant for nor-
malizing the integral of the truncated density function.
Throughout the simulation, we fix µ12 = 0.2, σ12 = 0.8,
and T = 100, while µ21 and σ21 are subject to changes.

First, we let µ21 = 0.4 and σ21 = 0.6 and solve the op-
timal intervention problem for various values of c1 =
{0.2, 0.5, 1} and s1

1 ∈ (0, 2] with the budget C̄ = 2. In
Fig. 2, we show the spectral radius of A under the op-
timal interventions for each value of c1 and s1

1. We can
observe the dependence of the minimized spectral radius
on the relevant parameters. For example, when s1

1 = 0.2
and c2 = 1, the optimal intervention reduces the spec-
tral radius ρ(A) from 6.28 to 0.55 with the dose alloca-
tions α1 = 0.13, α2 = 1.87. We show the sample paths
of the original and the optimized systems in Fig. 3.

We then observe how the shape of the density functions
of the sojourn times affects the optimal intervention
strategy. Let us fix c1 = 1 and s1

1 = 1 and vary the values
of µ21 and σ21 as µ21 ∈ [0.01, 2] and σ21 ∈ [0.01, 2]. For
each values of µ21 and σ21, we find the optimal amount
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of doses α?1, α
?
2 by using Theorem 1, and compute the

ratio c2(α?2)/C̄. We show the computed ratios in Fig. 4.
We observe that the variation of µ21 and σ21 significantly
affects the optimal resource allocation pattern. Remark-
ably, even with the same value of µ21 (i.e., even when
the average of the sojourn time is fixed), the optimal
resource allocation drastically varies dependent on the
value of σ21.

5 Conclusion

This paper studied the stabilization problem of positive
semi-Markov jump linear systems. By utilizing the spec-
tral property of nonnegative matrices, we proposed a
novel computation framework that the optimal perfor-
mance of the system can be formulated to a convex opti-
mization problem which is solved by optimizing the spec-
tral radius of the matrix under the budget-constrained
of the system parameter. Then, we checked the validity
through a simulation example of the biological propaga-
tion which illustrates the relations among these param-
eters.
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