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Abstract Resource allocation is an essential aspect of suc-
cessful Product Development (PD). In this paper, we formu-
late the dynamic resource allocation problem of the PD pro-
cess as a convex optimization problem. Specially, we build
and solve two variants of this problem: the budget-constrained
problem and the performance-constrained problem. We use
convex optimization as a framework to optimally solve large
problem instances at a relatively small computational cost.
The solutions to both problems exhibit similar trends re-
garding resource allocation decisions and performance evo-
lution. Furthermore, we show that the product architecture
affects resource allocation, which in turn affects the perfor-
mance of the PD process. By introducing centrality met-
rics for measuring the location of the modules and design
rules within the product architecture, we find that resource
allocation decisions correlate to their metrics. These results
provide simple, but powerful, managerial guidelines for effi-
ciently designing and managing the PD process. Finally, for
validating the model and its results, we introduce and solve
two design case studies for a mechanical manipulator and
for an automotive appearance design process.
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1 Introduction

Successful Product Development (PD) requires careful al-
location of development resources. Allocating resources to
various subsystems and modules within the product system
requires a deep understanding of many complex interactions.
These interactions arise from various sources; namely, due
to the physical interdependencies between the different sub-
systems in the product itself (i.e., the product architecture),
the arrangements of organizations that will carry out the de-
velopment process (i.e., the social network behind the or-
ganization), and the structure of the development process
(i.e., predecessor relationships between development activ-
ities) [35]. In particular, this paper is focused on obtaining
an understanding of the product architecture and its role in
resource allocation decisions during P

Product architecture is the scheme by which the func-
tional elements of the product are arranged into physical
chunks and by which the chunks interact [31]]. Product archi-
tecture plays a significant role in every aspect of the product
lifecycle from influencing how the product is designed, man-
ufactured, marketed, experienced, serviced, and retired [32,
37]. Additionally, the product architecture has profound im-
plications for many product behavior properties from ro-
bustness [[12]] to evolvability [19]. It also influences how re-
sources are allocated in the PD process [22436]].

! Product architecture is not the only driver for resource allocation
decisions. Other drivers, such as existing product lineup, competitive
products, product demand and price, technological advancements, con-
sumer taste changes, balancing the development portfolio, etc., may
play an influential role [30]. However, we focus on product architec-
ture since it is the central issue in our proposed model.
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Product architecture is usually described by a contin-
uum between an integral product architecture to a modu-
lar one. In integral architectures, the product functions are
shared by product modules (i.e., physical elements), and in
modular architectures, each function is delivered by a sep-
arate element or module. Thus, integrality creates interde-
pendence between product elements or modules. This inter-
dependency, in turn, results in complexity. That is, some of
the interdependencies may not be known in advance, or their
influence on product and PD process performance may also
be unknown. Within this complex PD environment, several
studies have argued that the product architecture may evolve
from integral to modular [13}36].

In this paper, we investigate how the product architec-
ture may influence the resource allocation decision to var-
ious modules using an optimization framework. Using this
framework, we investigate the tendency for product archi-
tectures to evolve form integral to modular architectures.
The main objective of this paper is to check whether the
location of a module within the product architecture can of-
fer PD managers insights into optimal resource allocation
decisions.

Several authors have formulated and analyzed the PD
problem by analogy to dynamic linear systems (e.g., 221126
34]). In their analysis, they assumed that all tasks in the de-
sign structure matrix (DSM) proceed in parallel, where the
DSM is a matrix representation of the development network.
At any iteration stage, one unit of work on one task results
in a fraction of rework for the other dependent tasks dur-
ing the next iteration stage. The dependency between tasks
is captured by the numerical values in the DSM. As such,
the work completed in a current design iteration is a linear
function of the work completed in the previous design iter-
ation, with the linear weights being the numerical values in
the DSM.

Other authors have used complexity theory to describe
and analyze the PD process [1]]. For instance, Braha and Bar-
Yam [12] introduced the NK-based model and analysis of
product development project networks. They showed how
the underlying network topologies and statistical structural
properties provide direct information about the functional-
ity, dynamics, robustness, and fragility of these PD projects.
Also, the authors in [16] argued that modules could be opti-
mized independently if interface standards between modules
are left unchanged. Similarly, Luo [19] used the NK frame-
work to show how different product architectural patterns
can influence product evolvability.

Network analysis has also been used for analyzing PD
project network [5./14]]. For example, the analysis of the net-
work structure (i.e., statistical properties) for various soft-
ware and hardware development projects in [12] revealed
that these networks have both small world and scale free net-
work patterns. Additionally, they demonstrated that complex

design networks are highly robust to the failure of randomly
selected design components, but weak for failures targeting
specific components (such as hub components). Similarly,
Sosa et al. [27] found that the analysis of the network struc-
ture of complex product designs (particularly, the existence
of hubs in the design network) impacts the quality of the
product being developed.

More recently, the authors in [36] have formulated the
PD resource allocation problem as a nonlinear optimiza-
tion problem. Furthermore, the authors proposed a dynamic
model in which there are several investment runs (or rounds)
during the PD process. This formulation allowed the inves-
tigation of several interesting hypotheses, including the im-
pact of architecture on performance evolution from integral
to modular systems.

In this paper, we offer a more efficient optimization ap-
proach based on convex optimization techniques, which would
allow us to find the globally optimal allocation of develop-
ment resource In this direction, we first adopt a discrete-
time linear system to represent the work transformation fea-
ture in the PD process. Then, we propose an optimization
framework where the resource allocation problem of the PD
process can be transformed into a convex optimization prob-
lem. We then apply our framework to symmetric and syn-
thetic product architectures to reveal the trends of the evo-
lution of optimal investment. Finally, by analyzing real case
studies with asymmetric PD architectures, we gain insights
into the resource allocation problem and provide a guide for
designing and managing the PD process.

The following sections are organized as follows. In Sec-
tion |2} we describe the work transition feature of the PD
process by a discrete-time linear system. Then, we formu-
late the budget-constrained problem and the performance-
constrained problem for optimal resource allocation. In Sec-
tion 3] we propose the framework that both the optimiza-
tion problems can be transformed into the convex optimiza-
tion problems. In Section[d] we perform the experiments and
analysis for the optimal solution of the PD process. Finally,
we carry out two case studies to illustrate the result of this
paper in Section 3

2 Proposed model

In this section, we first review the dynamic model of the PD
process proposed in [36]. Then, from the perspective of sys-
tem and control, we show that the work transition feature in
the PD process can be expressed by a discrete-time linear
system. Finally, we formulate the optimal resource alloca-
tion problem of the PD process as the budget-constrained

2 See [24] Section 4] for a related discussion on convex optimization
in the context of engineering design.
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optimization and the performance-constrained problem sep-
arately.

2.1 Work transformation matrix

In PD, the product architecture is built not only by the con-
stituent parts that define the product system (i.e., modules
or components), but also by the interaction relationships be-
tween these parts (i.e., dependency structure) [31]. In this
paper, we assume that the product architecture has been de-
termined in the early design stage. That is, the modules and
their dependency structure (i.e., design rules) have been es-
tablished. In this situation, we focus on improving the per-
formance of PD system through allocating the development
resources to the various modules and design rules over all
investment rounds (i.e., design iterations).

We start the problem formulation by reviewing the dy-
namic PD model presented in [36]. Suppose that there are
n modules and T investment rounds during the PD process,
we let P,(k) represent the amount of the remaining work in
the ith module after finishing the kth investment round. The
remaining work of all modules is defined by the vector

Py (k)

The progress of the PD process is evaluated by the sum of
the remaining work in each module [18]], which implies that
the less total remaining work, the higher performance the
product system has. Thus, the inverse of the sum of the re-
maining work from all modules can be adopted as a mea-
surement of the performance of the PD system at each round,
which is expressed by the following expression:

1/2&(/«» )

At each iteration stage, the module finishes a certain amount
of remaining work, and sends/receives the produced work
(i.e., a fraction of rework) to/from its dependent modules. To
describe this work transformation process, we use a discrete-
time linear system expressed by the following equation:

P(k) =Ar(dp, i )P(k—1), k=1,....T, 2)
where Ag (@, 1) is the work transformation matrix (WTM),
Ok ={O1ks-, Onic}

is the set of the work completion rate of modules, and
(L,j=1,...,n,i#])

is the set of the updated value of design rules. The value
of the inter-module variable ¥;; ; represents the work flow

Y = {%‘j,k}

strength from module i to j at kth investment round, i.e.,
at round k + 1, the accumulated produced work to module
j is the sum of the multiplication of the remaining work
P,(k) on module i and ¥;j 4. For an established product ar-
chitecture, the performance of the product system can be
further improved by investing in both modules (i.e., deter-
mining the work completion rate in each iteration stage) and
design rules (i.e., reducing the dependency strength between
two modules). We assume that ¢, 7 can be tuned within the
following intervals:

0<0ix < ix <Pixy 0<%jk <Yk < Fijis

where qS,-7k,;7,» jx are the initialized parameter values in (),
and ¢; x, % are the upper and lower bounds of the param-
eters, respectively. For the PD process with multiple invest-
ment rounds, the authors in [|36]] showed that unlike the mem-
oryless feature in the investment for the modules, the invest-
ment in the design rules for reducing the work flow strength
has a cumulative effect. That is, ¥;;; at the kth round is
updated to include the values of the design rules that re-
sulted from the investment prior to the kth round. Therefore,
the updated values of the design rules at the kth iteration
¥:jx is the multiplication of the updated value of the design
rules from the 1st to the kth round, which is expressed as
H'gzl %ij,¢- The specific form of the matrix Ag (¢, ¥) is given
by

k¢l,k [T Yo -+ ngl Yine
[l vie Gk - Tlim Vonge
Ac(Ps W) = : : , :

k k
H[:] Va0 H[:l %12,[ T ¢n,k

Suppose that we can use the development resources to
update the value of @, %. That is, we can use the resources
to tune the work completion rate ¢ and the dependency
strength 7. Moreover, we assume that there is an associated
cost f;(¢ix) for tuning the value from ¢; 4 to @; x. Likewise,
gij(%ijx) is the cost for tuning the value %; to ¥ . Then,
the total cost at the kth investment round equals

Bi(di, %) = Y fi(0ii) + Y Y 8ii(Yijk)- 3)
i=1

i=litj

Form the perspective of the project manager, it is im-
perative to optimally allocate the development resources to
obtain the maximum benefit, especially when a huge project
is carried out. However, making the optimal resource allo-
cation strategy for thousands of decision variables just by
experience and intuition seems not very effective. Thus, a
mathematical programming formulation for finding the op-
timal investment strategy is essential.
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2.2 Optimization problem

As mentioned in Section@ at each iteration, PD managers
can use a certain amount of development resources to im-
prove the performance of the product system. Particularly,
the resources can be allocated on a module for tuning its
work completion rate or on the design rule for reducing the
dependency strength between two modules. Assuming that
given a set of budgets for each investment round during the
whole development process, how should we make the al-
location strategy to minimize the total remaining work of
the PD process? Based on this question, we formulate the
budget-constrained problem as follows:

Problem 1 (Budget-constrained optimization) Assume
that, given P(0), there are T investment rounds with the cor-
responding budgets By > 0 (k= 1,...,T) for resource allo-
cation during the PD process, as well as the cost functions
fi(¢ix) and g;;(%;«). Find a sequence of decision variables
for allocating the resources in modules ¢ = {¢;4}/_, (i =
1,...,n) and designrules y = {¥jx }/_,(i,j = 1,....n, i #
J) to maximize the performance measure (T)).

Mathematically, we formulate the budget-constrained
problem as:

n
ma)gmize 1/Y P(T) (4a)
v i=1
subject to Bi(¢x, %) < By, (4b)
0< ix < Oix < Pix, (4c)

O<]/ij,k§7ij,k§77ij,k7k:17~~-7T- 4d)

For the budget-constrained problem, our goal is to make the
optimal resource allocation strategy to maximize the PD per-
formance. However, PD managers also face another chal-
lenge when the manager plans to meet prescribed target on
the remaining work at 7. The question becomes: how to
make the resource allocation decision to minimize the cost
of meeting the prescribed performance requirement? In this
case, we formulate the performance-constrained problem as
follows:

Problem 2 (Performance-constrained optimization)
Assume that, given P(0), there are T investment rounds and
the prescribed performance requirement & > 0, as well as
the cost functions f;(¢; ) and g;;(7:j ). Find a sequence of
decision variables for allocating the development resources
in modules ¢ = {¢;x}/_; (i =1,...,n) and design rules
y={%jxt_, (i,j=1,...,n, i # j) to minimize the total
investment while satisfying the requirement on the perfor-
mance (I)).

As in (@), we can mathematically build the performance-
constrained problem as the following:

T
minimize Z By (0, 1) (5a)
VA
n
subjectto 1/ ZP,-(T)E T, (5b)
i=1
0< gix < ik < Pis (5¢)
0< Yjk < Yijk <Fyju-k=1,...,T.  (5d)

Notice that the performance constraint (3b) is equiva-
lent to the following constraint on the sum of the remaining

is regarded as the maximum allowable amount of the re-
maining work left at the end of the investment.

The difficulty of solving the budget-constrained prob-
lem and the performance-constrained problem mainly stems
from the nonlinearity of the functions (@a), (5a) and con-
straints (@b), (3b). That is, the budget-constrained problem
and the performance-constrained problem become nonlin-
ear optimization problems. Although there are some numer-
ical solutions for this case based on heuristic methods [2}
7, such techniques can cause the solution to be trapped in
a local optimal point. Moreover, the computation cost of the
heuristic solver grows rapidly with the increase in problem
size (i.e., the number of modules, design rules and the in-
vestment rounds). Thus, there exists a need for developing a
computation framework that can deliver the optimal solution
for a relatively large size of the resource allocation problem.

3 Solution using convex optimization

In this section, we present an optimization framework for
efficiently solving the budget-constrained problem and the
performance-constrained problem. Under the relatively mild
assumption on the cost function, we can show that problems
can be transformed into convex optimization problems. Let
us begin with reviewing the definition of posynomials with
the following:

Definition 1 ([8]) Let v = {vy, ..
tive variables.

., Wy} denote n real posi-

1. We say that a real function g(v) is a monomial if there
exist ¢ > 0 and a set of real numbers ay,...,a, such that

gv) =cvit v
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Fig. 1: Four DSM architectures. All with 50 modules and 100 design rules: (a) block-diagonal network, (b) Erdés-Rényi
network (Random), (c) Watz-Strogatz network (Small world), (d) Barabdsi-Albert network (Scale free). The diagonals in the
DSM represent the location of modules, and the off-diagonals show the dependencies between modules.

2. We say that a real function f(v) is a posynomial if f is a
sum of monomials of v.

To precisely model the cost features, the nonlinearity
from the practical problem can not be ignored. From Def-
inition [T} we can see that the posynomials are nonlinear
functions which can be used for fitting real data from prac-
tical PD problems. For specific techniques to fit posynomi-
als to real data, we refer readers to [9]]. Also, the following
lemma shows the convexity property of posynomials, which
is essential in transforming the budget- and performance-
constrained problems into convex optimization problems.

Lemma 1 ([9]) If f is a posynomial, then, the function x —
log f(exp[x]) is convex.

As mentioned earlier, the nonlinearity of the real data
can be fitted by posynomials. From Definition[T} we can see
that the range of the posynomials is in the nonnegative num-
ber field. However, in practice, real data may run out of the
nonnegative area. Thus, normalizing the range of the cost
function to the nonnegative field is necessary (i.e., adjust the
minimum value of the cost function larger than 0). For en-
suring the non-negativity of the cost function, we assume a
specific structure [23] on the cost function:

[i(ik) = £ ($ix) — £ (@),
8ij(Yijk) = &5 (hjx) — &5 (Fjw)-
The essential part of the cost function is the first term £ (¢ ),
while the second term (—f;"(@;)) is for normalizing the
cost function as f;(¢;x) = 0, similarly for g;;(%;x), which
means that the zero investment yields no cost.

The resulting optimization problems (@) and (5) are not
trivial to solve directly because the nonlinearity in the work
transformation process function (4a), (3b) and the resource
cost functions @b)), (3a). Although there exist heuristic op-
timization methods that can solve this problem, the solution
is local optimal due to the constraint of the algorithm. In

fig(vij)

Yij

Fig. 2: Three cost functions with p = 1, 10, and 50.
£ij(£ij) = 0 represents that no resource is allocated, where
£;; denotes the initial value of the certain entry in WTM.
fij(€£;j) = 1 indicates the upper bound of the allocated re-
sources where we can to obtain the fully improved value.

a complex product development project that contains hun-
dreds of modules and design rules, finding the global opti-
mal resource allocation strategy can bring great benefit for
the company and shareholders. Therefore, it is necessary to
establish an efficient computation framework for obtaining
the global optimal solution to the problems @) and (3).

The following theorem allows us to overcome the dif-
ficulty and solve the budget-constrained problem and the
performance-constrained problem via convex optimization
and is the main theoretical result of this paper. The proof of
the theorem is presented in the Appendix.

Theorem 1 Problems [I| and |2 reduce to convex optimiza-
tion problems.

4 Experimental setup, analysis and discussion of results

In this section, we show the effectiveness of the proposed
framework by solving relatively large-size PD problems with
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different product architectures. Furthermore, by investigat-
ing the solution, we reveal the trends, structure, and relation-
ship of the decision variables. In Section we introduce
four typical DSM architectures embedded in our simulation
experiments. In Section f.2] we give the specific form of
the cost function. Then, in Section [#.3] we present the opti-
mal solution of the budget-constrained problem, perform its
analysis, and discuss the results. Likewise, in Section @
the optimal solution of the performance-constrained prob-
lem is demonstrated and discussed. In Section 4.3} we sta-
tistically investigate the impact of product architecture on
optimal resource allocation.

4.1 DSM architecture

As mentioned earlier, the design structure matrix (DSM) is
a matrix representation of the development network having
a particular architecture [235]]. For this reason, the DSM ar-
chitecture in our experiment is determined by the following
network models: the block-diagonal [25]], the Erd6s-Rényi
(random) [15]], the Watz-Strogatz (small world) [33]] and the
Barabasi-Albert (scale free) [4] graphs.

Fig. [1] shows the four DSM architectures used in this
paper. On one end, the block-diagonal network represents
a typical modular architecture, where the dependencies be-
tween modules are divided into dependent groups (no in-
teractions between the groups), and the modules in each
group are fully dependent (see Fig.[T|(a) [38])). Alternatively,
the Watz-Strogatz network and the Barabdsi-Albert network
represent the other extreme, called integral architecture. The
Watz-Strogatz network in Fig. [I] (c) shows the small world
property, where most modules dependencies are local, but
few dependencies exist between the distant modules [33}
36]. The Barabdsi-Albert network in Fig. (1| (d) illustrates
the preferential attachment feature of the PD project. The
project starts with few modules and as the design process
unravels the new modules are linked to the old modules [4,
36]]. We adopt the Erdés-Rényi network in Fig. [T](b) for ran-
domly setting the dependency structure in the DSM, which
serves as a benchmark to other patterned DSM architectures.
For other DSM architectures, we refer the readers to 10,11}
36].

4.2 Cost function

As mentioned in Section 2.1} the resources allocated on the
modules and design rules result in a reduction of the param-
eters in (2. Based on this, we claim that the cost function
should be a decreasing function, and satisfy Definition
Thus, we use the following cost function:

1 1
fijk(Wijx) = cij <(%.j’k)l7 B (Qij,k)p) ’ ©

where ¥ (i,j = 1,...,n, i # j) is the updated value of the
parameter in the WTM, p is a positive real number for tun-
ing the shape of the concerned cost function, and c¢;;, £;;
are positive numbers for fitting the value of the cost func-
tion to satisfy Definition[I] Then, we make the following as-
sumption to show the diminishing return property, which en-
sures the convexity of the cost function as well. Suppose that
there is a fixed increment &;; > 0 on ¥, and let A fi;(y;j) =
fij(vij — &j) — fij(7ij) represent the cost for tuning 7; to

rameter tuning cost A f;;(%;) increases with ¥, and also im-
plies the convexity of f;;. In practice, the parameters of the
cost function are carefully assigned by the managers and the
work teams (e.g., see [281136]). Fig. [Z] shows three realiza-
tions of the cost function under different values of p.

4.3 Analysis and discussion of the budget-constrained
problem

In this subsection, we optimally solve the budget-constrained
problem through our proposed framework. Then, we inves-
tigate the evolution of decision variables during the budget-
constrained PD process. Finally, we introduce the centrality
metrics for measuring the importance of modules and design
rules, and study whether the allocated resources or the re-
maining work in each module or design rule correlates with
its centrality.

In this simulation experiment, for testing the effective-
ness of solving a relatively large scale PD problem [3]], we
produce the DSMs of size 50 and hold the total number
of dependencies to 100 for each DSM architecture. We set
the number of investment rounds 7 = 5, and the budget
By = 300 for each investment round. For initializing the pa-
rameters of the WTM, we unify ¢;x = 0.5 (k=1,...,5,i=
1,...,50) and ¥;jx = 0.05 (i, j = 1,...,50,i # j) for all the
experiments. For all the cost functions, we unify the param-
eters with ¢;; =1, p =1, ;; = 1, and € = 0.1, which indi-
cates that the ¢ and y can be updated between [0% — 90%]
of the initial value. From the parameter initialization, we can
see that the values of ¢;; and ¥, can be tuned within the
intervals [0.05,0.5] and [0.005,0.05], respectively. We con-
duct the experiments with the selected DSM architectures
in Fig[I] and observe the following response variables: the
remaining work in modules, the investment in the modules
and the design rules, and the dependency strength between
modules.

For problem solving, we adopt the commonly used off-
the-shelve software for convex optimization problem: fmin-
con routine in MATLAB. From the experiment setup, we
can see that the total number of the decision variables is
(50+ 100) x 5 = 750, which reaches the standard size of
large PD process. Through running the experiment on the
desktop with common configuration (i.e., Intel Core 17-7700
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(a) Remaining work in modules versus investment round. Colorbar indicate the importance (PageRank) of the Y-axis values.
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(c) Investment in design rules versus investment round. Colorbar indicate the importance (PageRank) of the Y-axis values.
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(d) The dependency strength of design rules versus investment round. Colorbar indicate the importance (PageRank) of the Y-axis values.

Fig. 3: The optimal solution of the budget-constrained problem. Color lines distinguish the importance of modules/design
rules via the PageRank (the importance is fixed from O to 1, see the colorbar on the right side).

and 8GB memory), the average time for solving the opti-
mization problem is 210 minutes, which illustrates that our
framework is capable for solving the much larger-scale prob-
lems.

Fig. [3] shows the evolution of the resource allocation
variables (¢, ¥jix), the remaining work P;(k) and the de-
pendency strength of design rules in solving the budget-
constrained problem. Particularly, Fig. [3] (a) shows the de-
creasing trends of the remaining work in each module, which
indicates that the PD process is in progress. However, this
experiment contains more than 1 investment round, so just
by observing the remaining work from Fig. 3| (a) is not easy

to distinguish the effect of the investment at each round.
Thus, we define the completion rate & (k) for each invest-
ment round by

Yioi B(k) - YL Pkt 1)
Lizi Pi(k)

From Fig.[d] we can observe the evolution of the completion
rate during the process, where the performance of product
system is monotonically improved with successive invest-
ment. Compared with the experiment with no investment
(dashed line), we can derive that the PD process is accel-
erated with the allocated resources. As seen in Fig. [d] with

& (k) =
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Fig. 4: Evolution of the completion rate in the budget-
constrained problem.
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Fig. 5: The correlation between the investment in module
and the total investment in its dependent design rules in the
optimal solution of the budget-constrained problem.

the investment in progress, the performance reaches its sat-
uration. We also notice that the limits of performance are
different for the DSM architectures, which implies that the
DSM architecture must be taken into consideration for fur-
ther studying the performance. We note that the high per-
formance of the block-diagonal network is consistent with
the finding in [10] that real design networks have a nested
hierarchical network structure.

Figs. B (b) and [3] (c) show the evolution of investment
in modules and design rules, where we can see that the in-
vestment in modules increases, while the investment in de-
sign rules decreases. This phenomenon is in line with the
result in [36]] that there is a shift in resource allocation from
design rules to modules as the development process pro-

gresses. Moreover, it is worth noting that the modular archi-
tecture consumed more resources on the modules compared
with design rules, while integral architecture consumed more
resources on the design rules. Thus, the evolution of the de-
cision variables also confirms that the product architecture
evolves from integral to modular as the product matures. In
Fig.[3](d), we can see that the dependency values of the de-
sign rules tends to O, which indicates that the dependency
strength between modules is reduced or nearly eliminated
by successive investment in design rules.

Next, we carry out a further investigation on whether
there is a relationship between the optimal cumulative in-
vestment in a specific module and its related design rules.
We define the cumulative allocated resources on the module
during the process by

T
ui=Y fi(9ix)
k=1

and its related design rules

T n n

pi=Y | Y &ii(vin)+ Y gi(tix)

k=1 \j=1 j=1
We also define the cumulative allocated resources on design
rules by

T
pij = kZ (81 (%70) + 85 (Vik)) -

=1
Fig. 5] shows a positive correlation between the investment
in the modules and its related design rules. This observa-
tion can be used as a managerial guideline for resource al-
location: if a module is assigned with a certain amount of
resources, then corresponding amount of resources must be
allocated to its related design rules.

After discussing the results in Fig. 3] we introduce the
centrality metrics (i.e., importance measures) for the mod-
ules and design rules to investigate whether there is a rela-
tionship between the investment in module/design rule and
its centrality. For describing the importance of the modules
and design rules, we adopt three centrality metrics [21]]: the
Eigenvector, the PageRank, and the Closeness centrality. For
simplicity, we normalize each centrality metric to 1. Through-
out the paper, we let the centrality metric of the ith mod-
ule be denoted by r;, and the centrality metric of a design
rule between the ith and the jth module be denoted by 7;;,
respectively. Then, Figs. [69] show the the dependence on
the centrality measures of remaining work P;(7'), cumula-
tive resource allocation y; on the modules, and cumulative
resource allocation p;; on the design rules. From Figs. @-
[0l we observe that the extent of correlation varies with dif-
ferent centrality metrics. To decide which centrality metric
performs the best in describing the correlation, we adopt
Pearson correlation [6] to help us select the proper centrality
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Fig. 6: The remaining work, investment in modules and design rules of Problem |1| versus their centrality measures in the
Erdds-Rényi (random) network. Dash line: Linear regression line.
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Table 1: Pearson correlation analysis for the budget-constrained problem (Figs. E gi

DSM Eigenvector centrality =~ PageRank  Closeness centrality
Remaining work 0.993 - 0.999
Block-diagonal  Investment in module 0.992 - 0.989
Investment in DRs 0.993 - 0.979
Remaining work 0.561 0.947 0.867
Random Investment in module 0.518 0.944 0.886
Investment in DRs 0.443 0.573 0.595
Remaining work 0.501 0.968 0.531
Small world Investment in module 0.483 0.972 0.526
Investment in DRs 0.377 0.614 0.364
Remaining work 0.493 0.994 0.948
Scale free Investment in module 0.427 0.987 0.968
Investment in DRs 0.666 0.751 0.734

metric. A perfect Pearson correlation 1 occurs when each of
the variables is a perfect monotone function of the other. On
the contrary, 0 means that there is completely no correlation
between the two set of numbers. Table [I] shows the result
of Pearson correlation for Figs. [6H9] From Table [T} we can
see that PageRank performs the best except for the block-
diagonal case because the definition of PageRank is infeasi-
ble for measuring the block-diagonal network. Fortunately,
both the Eigenvector centrality and the Closeness centrality
perform a strong linear correlation, which can be used for
the block-diagonal case.

From Figs.[6}0] we find that there exists a relatively strong
correlation between the investment/remaining work and its
PageRank centrality under the four DSM architectures. So,
as a quick heuristic, we can assign the budget as a func-
tion of centrality instead of solving a complex optimiza-
tion problem, as previously found in [1220]. Moreover, PD
managers can use PageRank centrality as a proxy to allocate
development resources for the modules.

For the correlation between the investment in the design
rule and its centrality in Figs.[6](c){9](c), we can see that the
extent of correlation in Figs. [6](c){8](c) is not strong enough
for drawing a conclusion. However, for the block-diagonal
case in Fig. [9] (c), we observe a different phenomenon that
hundred of variables are overlapped to a few points, and are
strongly correlated with the Eigenvector and the Closeness
centrality. Specifically, we notice that design rules belong-
ing to different sub-blocks but with the same size receive the
same amount of investment. In other words, the investment
in design rules is independent of the block to which it be-
longs. This independence is caused by the special structure
of the block-diagonal network, in which all the sub-blocks
are independent of each other.

4.4 Analysis and discussion of the
performance-constrained problem

In this subsection, we solve the performance-constrained prob-
lem via convex optimization. Although we have revealed
the trends of the decision variables and the internal rela-
tions for the budget-constrained problem, we cannot con-
clude that the same situation also exists in the performance-
constrained problem.

As in Section [4.3] we perform the simulation experi-
ment on a controlled set of product architectures. For ini-
tializing the performance-constrained problem, we adopt the
same parameters setting as the budget-constrained problem.
Based on the formulation of the performance-constrained
problem, we set the constraint for the total remaining work
of the final investment round to P = 0.01, which can be re-
garded as a threshold for judging the accomplishment of the
PD process. For example, suppose that the total remaining
work at the beginning is normalized to 1, if we set P=0.01,
it means that when the total remaining work is 1% its initial
value, we can say that the project is finished. We conduct the
experiments with the selected DSM architectures in Fig [T}
and observe the following response variables: the remaining
work in modules, the investment in the modules and the de-
sign rules, the dependency strength between modules, and
the total investment at each round.

Fig. [I0] shows the evolution of decision variables and
the remaining work of the performance-constrained prob-
lem. From Figs. (a)-(c), we can see that the solution of
the performance-constrained problem exhibits similar trends
to the budget-constrained problem. Particularly, the solution
shows that the product architecture evolves from an inte-
gral to a modular as successive investment are made on the
modules and the design rules. In Fig. [I0](d), it is worth not-
ing that there is a decreasing tendency on the total invest-
ment during the PD process, which contradicts our intuition
that the resources should be equally allocated for each in-
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Fig. 10: The optimal solution of the performance-constrained problem. Color lines distinguish the importance of mod-

ule/design rules via the PageRank.

vestment round. In the performance-constrained problem,
we also find the positive correlation between the investment
in the module and its related design rules as the budget-
constrained problem. Further analysis similar to the ones
for the performance-constrained problem allows us to draw
the same set of conclusions as the one we obtained for the
budget-constrained problem. The details are omitted.

4.5 Analysis of different DSM architectures

In this subsection, we carry out an analysis of variance on
the product architecture to investigate whether the product

architecture affects the resource allocation and the perfor-
mance of the designed PD system. It is important to remark
that the set of synthetic networks we use for our analysis
is not intended to replicate all the aspects of real design
networks, specifically the significant difference between the
distribution of in- and out-degrees in the product architec-
ture [10,114112].

In this experiment, we used the four DSM architectures
introduced in Fig. [T] and selected the three response vari-
ables: total remaining work, total investment in modules,
and total investment in design rules. To detect any statis-
tical difference, we randomly generate 50 sample networks
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Fig. 11: The total investment and performance of the budget-constrained problem versus different DSM architectures. The
difference among the networks is statistically significant at the significance level of 10%, except between the random and
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Fig. 12: The total investment and performance of performance-constrained problem versus different DSM architectures. The
difference among the networks is statistically significant at the significance level of 10%, except between the random and

small world networks.

for each type of product architecture. In all the problems, we
unify the parameters of the WTM and the cost functions as
in the previous sections. We solve these problems with the
proposed framework in this paper. The results of the budget-
constrained problem and the performance-constrained prob-
lem sorted by product architecture are shown in Figs. [IT]
and[T2] respectively. We use Boxplots to illustrate the max-
imum, the minimum, the variance, and the mean value of
the investment and the remaining work. We observe that the
architecture affects the resource allocation, which in turn af-
fects the remaining work, investment in modules and design
rules of the PD process. To statistically investigate the de-
pendence, we also carry out one-way ANOVA tests [29] be-
tween pairs of data. We adopt the p-value from the ANOVA
test as an index to illustrate the difference between each
two networks. We observe that the difference among the
networks is statistically significant at the significance level
of 10%, except between the random and small world net-
works. This tendency could be partly attributed to the simi-
larity in the construction rules for these two networks.

For the remaining work of the budget-constrained prob-
lem (Fig.[T1] (a)), we can see that the block-diagonal archi-
tecture has the minimum remaining work (the best perfor-
mance) compared with the other three architectures, which
indicates that the modular architecture performs better than
integral architecture (i.e., small world and scale free). Be-
sides, we also notice that although the block-diagonal has
the best performance, the variability is larger than the Small
world case. This result implies that the stability of prod-
uct architecture can not be neglected in designing the DSM
structure. From Figs. [IT] (¢) and (e), we confirm that there
exists a variance on the investment in modules and design
rules with different product architectures. Also, from Fig.[12]
for the performance-constrained problem, we can see that
for meeting the same target of the remaining work, the block-
diagonal architecture costs the minimum resources among
the four architectures, which also indicates that the modular
architecture performs better than integral architecture.
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Table 2: Task duration of tire and wheel manipulator design

Tasks Duration (h), best and worst case
A. Design arm 4,10
B. Design arm joints 2,10
C. Design grip mechanism 5,10
D. Design rotating base 45,5
E. Finite element analysis 6, 10
F. Dynamic simulation 1.5, 10
G. Factor of safety 1,15
H. Failure mode analysis 1,4
1. Build prototype 27,40
J. Evaluated prototype 2,5

Table 3: The WTM of the manipulator design process

A B C D E F G H I J
A % S W W W vV W W W
B M * W W W W S W W
cCl M wW * M W S W W
DlwW W wW =* W v W
ElW W W W * S W w
FIM M M M W * W W w
G|W W W W S W * W w
HiW W W W M W M * w
IfTwW W W W W M W W * W
JIW W W W W W W W § *

S-strong dependency between tasks
M-medium dependency between tasks
W-weak dependency between tasks

Table 4: WTM for Automotive appearance design

L L, Ly Ly Ls

Lg Ly Lg Lo Lo

L, [08 0.2 002 006
L | 0.1 053 004

Ly | 002 004 047 0.08
Ly | 0.06 0.18 0.68
Ls | 0.04

Le 03 026 0.16
j 002 002 0.1
Ls 0.1
Ly | 008 024 0.8 008
Lo 0.02  0.02

0.06

0.83

0.06
03 0.02 024  0.02
024 0.02 0.18  0.02
0.14 0.1 0.02 0.08
0.28 0.06 002 02
0.06 076 0.06 0.04
0.06 0.83 0.16
0.04 004 016 063 02
0.26 0.2 0.7

4.6 Limitation and robustness

We discuss the limitation and robustness of our analysis in
this section. First, as we remarked in the introduction, the
set of synthetic networks we use for our analysis does not
necessarily cover all the types of realistic design networks.
As revealed in the seminal works in [1O|11L12], empirical
product development architectures often exhibit distinctive
asymmetry between the distributions of incoming and out-
going links. For this reason, we investigate real product de-
velopment processes having asymmetric architectures in the
next section.

Second, our findings above are dependent on the the cur-
rent choice of relevant parameters. In order to examine the
robustness of our analysis to the choice of parameters, we let
the shape parameter p of the cost function (B)) vary between
[1,10] and perform simulations. We then found that the so-
lution (i.e., the resulting pattern of resource allocation) ex-
hibits the same trend, which suggests the robustness of our
analysis. We also vary the other shape parameter c;; to find
that, the larger c;;, the lower the effect of the investment on
the development process due to the higher price of the re-
sources.

5 Case study

In this section, we demonstrate and validate our proposed
model using two case studies considering the resource allo-
cation problems for the PD processes presented in [17,[34].

5.1 Case 1: Mechanical manipulator design

In this section, we consider the case study problem of the
tire and wheel manipulator design process presented in [[17]].
Table [2] lists all the tasks for the design process and the
best/worst duration for each task (in hours) per investment
round. The dependency structure of the design process, il-
lustrating the interactions among the tasks, is demonstrated
in the DSM (or WITM) as shown in Table [3] In Table [3] the
diagonal entries represent the completion rate for handling
the remaining work of the task, while the off-diagonal el-
ement indicates the ratio of the fractional work exchanged
among the tasks. In this paper, we adopt the inverse of av-
erage duration as the value of the diagonal entries of WTM.
Table[3|shows the value of dependency strength between the
tasks which are assigned in three numerical values: 0.5, 0,25
and 0.05 for strong (S), medium (M), and weak (W) depen-
dencies, respectively.

The assessment of the various input parameters to our
model can be easily collected through a set of structured



Optimal Resource Allocation for Dynamic Product Development Process via Convex Optimization 15

4 25 6 150
o o o .-
o - =
0g 0 b .- & e o’i@ o
= - IX-T3as ~ o - JolaNe)
~ O __oeawm=m77 B ---70 s & g .
[ay o) o L eemmmmT T = b--" e ©) P Pid
—————— 0 Q o 9 TN e
o R AT P ) e
0 . .
1 0 0®
0 1 0 1 0 1 10 23
Ti T Tij i
(2) (b) (©) d

Fig. 13: Optimal investment in modules and design rules of the budget-constrained problem versus PageRank centrality in
the tire and wheel manipulator design. (a) Remaining work versus centrality; (b) investment in modules versus centrality;
(c) investment in design rules versus centrality; (d) investment in module versus the total investment in its dependent design

rules.

10 1

fi (@1.1-“)
i (i)

(a) )

Fig. 14: The optimal solution of the budget-constrained
problem of case study 1. Color lines distinguish the impor-
tance of module/design rules via the PageRank. (a) Invest-
ment in modules versus centrality. (b) Investment in design
rules versus centrality.

interviews (perhaps using a survey instrument) following a
similar procedure to the one described in [36]]. For the as-
sessment of the various DSM parameters used in our anal-
ysis, we recommend a three-step procedure: Kick-off, in-
dividual estimation, and review/wrap-up. In the first step,
a one-hour kick-off meeting is conducted with the prod-
uct development project team to identify all the develop-
ment tasks. In the second step, short individual interviews
are conducted with each team member to solicit their esti-
mate for task durations using two- or three-point estimates
for most-likely duration, worst case duration, and most op-
timistic (best) duration. Also, in this step, interviewees are
asked about their dependencies on other tasks from the al-
ready established list of tasks. A simple subjective scale can
be used for the strength of the identified dependencies: strong,
medium and weak. In the final step, the product development
project team is assembled again to review the results of the
interviews and resolve any discrepancy or disagreement in
any of the estimates.

In our case study, we specify the manipulator design
problem with an initial work vector P(0) = [1, ..., 1] (i.e.,
all the tasks at the beginning of the design process have
100% work remaining). We adopt the mean value of the best

and worst duration as a measure of the complexity of each
task (i.e., A1(@1,71)i = (tia +1 . )/2) the initial value of
the diagonal entries in WTM). While the values of the de-
pendency strength between tasks are represented by the off-
diagonal entries of WTM. For the cost function, we unify
the parameters of all cost functions with ¢;; =1, p =1,
£;; = 1, in that case, the unit of investment in the individu-
als has the same effect. Also, we let the variable ¢ and y of
cost function vary within the interval [0.1, 1], which means
that, after each investment round, the rate of dealing pro-
cess in each module and design rule can be accelerated be-
tween [0% — 90%)]. Also, we set investment round 7 = 5 for
the PD process. In the budget-constrained problem, we let
the investment budget for each round equally fixed by By =
200 (k=1,...,T). For the performance-constrained prob-
lem, we set the target for the remaining work Y7, P(T) =
0.01, which means that if the remaining work exceeds the
threshold 1%, we can assume the completion of the PD pro-
cess. From Section [}, we have shown the trends and struc-
ture of the optimal solution, so in the case study, we only
focus on analyzing the relations between the importance of
modules and design rules (i.e., their centrality) in the WTM
network and their allocated investment/performance.

Based on the analysis result from Section (4] we adopt
the PageRank centrality for measuring the importance of the
task/dependency in the WTM network. From Fig.[3] we can
see that both problems reveal the same trends and structure.
In Fig. [13] (a), the regression line shows that there is a cor-
relation but not strong between the remaining work in the
module and its PageRank centrality. We can still conclude
that the task with higher centrality tends to have a larger
amount of remaining work. In Fig.|13|(b), we get nearly the
same trend that the task with higher centrality tends to re-
ceive larger investment. However, in Fig. E] (c), there is still
an ambiguous correlation between the investment in depen-
dency and its corresponding centrality, which coincides with
the analysis result in Section ] From Fig. [I3] (d), we can
see there is a clear positive correlation between the invest-
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Fig. 16: The optimal solution of case study 2. Color lines
distinguish the importance of module/design rules via the
PageRank. (a) Investment in modules versus centrality. (b)
Investment in design rules versus centrality.

ment in the task and the total investment in its dependencies.
In Fig. we present the evolution of investment in mod-
ules and design rules. We can confirm the increasing trend
in modules and decreasing trend in design rules, as we have
found in our synthetic analysis in Section 4]

5.2 Case 2: Automotive appearance design

In this section, we adopt the automotive appearance design
presented in [34], which focuses on the design process of the
interior and the exterior surface of the automotive for achiev-
ing a balance among the appearance, quality, and operational
interface. However, we only focus on the local team which
contains the following tasks: 1) carpet, 2) center console, 3)
door trim panel, 4) garnish trim, 5) overhead system, 6) in-
strument panel, 7) luggage trim, 8) package tray, 9) seats,
and 10) steering wheel.

The WTM for the appearance design is given in Table 4]
where the diagonal entries represent the completion rate on
each module, while the off-diagonal entries represent the ra-
tio of the rework exchanged between each task. In this case
study, we specify the automotive appearance design prob-
lem with an initial work vector P(0) = [1, ..., 1]". For the

cost function, we unify the parameters of all cost functions
with ¢;; =1, p=1, £;; = 1, in that case, the unit of invest-
ment in the individuals has the same effect. Also, we let the
variable ¢ and Y of cost function vary within the interval
[0.1, 1], which means that, after each investment round, the
the completion rate on each module and design rule can be
accelerated between [0% — 90%].

We use 5 investment rounds (7 = 5) for the design pro-
cess. In the budget-constraint problem, we let the amount
of investment at each round equally fixed to B; = 200. For
the performance-constraint problem, we set the target for the
remaining work 0.01, which means that if percentage of the
remaining work is 1% of its initial value, then this will in-
dicate the completion of the PD process. As in the previous
case study, we focus on analyzing the relations between the
importance of modules and design rules in the WTM and
their allocated investment/performance.

Fig. [15] shows the investment versus the PageRank cen-
trality measures. For the relationship between the perfor-
mance/remaining work of the module and its importance,
we can see from Fig. [15](a) that the module with a higher
centrality has a larger amount of remaining work. This result
coincides with our intuition that the module has a lower cen-
trality means it has higher efficiency, which naturally results
in the lower level of remaining work. Similarly, in Fig. [I3]
(b), we can conclude that the module with higher central-
ity (i.e., lower efficiency) gets the larger investment for im-
proving its performance. As for the design rules, Fig. [I3](c)
shows the relation between the investment in design rules
and its centrality in the WTM network. From the linear re-
gression line, we can see that the correlation is not very
strong, but there is still a tendency that the design rule with
the higher edge centrality (i.e., connects the two lower ef-
ficiency modules) tend to attract more resources. Finally,
Fig. [[3] (d), we can see that there is a strong correlation
that the investment in the module with higher centrality (i.e.,
lower efficiency) coincide with the total investment in its de-
pendencies. Finally, in Fig. [I6] we present the evolution of
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investment in modules and design rules. As we found in the
first case study, we can confirm the trade-off between the in-
vestment in modules and design rules as increasing trend in
modules and decreasing trend in design rules.

6 Conclusion and discussion

PD managers are always faced with the problem of mak-
ing resource allocation decisions. Especially, when there are
several investment rounds, making optimal decisions based
on intuition or heuristic rules becomes rather difficult. Al-
though, some literatures have proposed analysis methods on
complex network theory [[LOJ11L5L12![14] and dynamic lin-
ear systems [261134], they lack of an analytical and mathe-
matical optimization framework similar to the one presented
in this paper.

Our results provide PD managers with an efficient tool
to allocate development resources optimally for the budget-
constrained problem and performance-constrained problem,
where the resources can be allocated on both modules and
design rules. Although we carried out the experiments with
two types of problems, and with different product architec-
tures for each problem, the evolution of the investment and
remaining work exhibit similar trends, which shows that the
evolution property of the PD process is independent of the
problem formulation and product architecture. Moreover, the
investment and performance in modules also illustrate that
certain correlations exist despite the problem formulation
and product architecture, which also confirms that these trends
and correlations are the intrinsic properties of the PD pro-
cess.

In the analysis of different PD architectures, we show
that the architecture of the product affects resource alloca-
tion which in turn affects the performance of the PD pro-
cess. Design and managerial guidelines can result from the
direct analysis of the PD architecture. Specifically, for de-
velopment engineers, our result can be used for selecting the
product architecture which leads to maximum performance.
On the other hand, when the PD architecture is fixed, our
proposed framework helps PD managers in deciding on the
optimal budget proportions to be allocated to modules and
to design rules.

Furthermore, for making a further utilization of our frame-
work, we discuss the feasibility of adding the linear regres-
sion lines for exploring the possibility of making resource
allocation decisions without the need for solving the opti-
mization problem (i.e., directly by utilizing the correlation
results). In other words, our proposed framework allows us
to gain insights into the relationship between the investment
and the DSM architecture, which inspires us to further in-
vestigate and model the mapping from the centrality of a
module to its investment. From the results in Section .5}

we know that the DSM architecture affects the resource al-
location which in turn affects the performance. Specifically,
from the regression lines in Figs. we observed that the
slope in each figure varies among different DSM architec-
tures, which indicates that modeling a general investment
function for all the DSMs is not feasible. However, if we fix
the DSM architecture and the problem size (i.e., number of
modules and design rules), is it possible for us to address this
problem? From the problem formulation in Section [2] we
know that there are numerous parameters in the WTMs and
the cost functions that can affect the shape of the regression
line. Currently, we cannot determine what DSM parameters
influence the slope of the regression line.

One limitation of the framework proposed in this paper
is that it does not consider the time-delay effect; so, dynamic
investment problem with time-delay need to be considered
in future work; especially, if the parameters of the PD sys-
tem are updated after a certain period. Then, the investment
decision making problem becomes applicable to a more gen-
eral situation.
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Appendix

In this appendix, we illustrate how we can reduce Prob-
lems|T]and2]to convex optimization problems. We introduce
the following notations for cost functions. For the total cost
function in (3), we define

¢ka7k Zf (9ix) +Zzg” Yijk)s
i=1i#j

e (O %) = Zf+ Pix) +ZZ&, Yijk)-
i=1i#j

Let us first show that Problem [I] reduces to solving a
convex optimization problem. Notice that the optimization
problem (@) is equivalent to

minimize i P(T) (7a)
9y i=1

subject to By (¢, i) < By, (7b)

0 <9k < Pix < Pix, (7¢)

0 <%ijk < Yijk < Vijh k=1,...,T. (7d)

Under this notation, we can show that the solution of the
budget-constrained problem is given by

¢ = explx], v =exp]], (®)

where exp[-] is the entrywise exponential function of the
variables, and x = {x;}/_, and y = {yx}/_, solve the fol-
lowing convex optimization problem:

minimize I' (9a)
xy,
subject to  log By (xx,yk) < log(Bi+ By, ), (9b)
n
log) R(T)<T, (9¢)
i=1
log ¢ix < xix <logfix, (9d)
log ¥ijk < yiju <10g%j k- (%e)

Let us give a brief proof of this statement. Under Lemmal[T}
it can easily be seen that (7d), (7b), and in the budget-
constrained problem are equivalent to (Ob), (9c), (©d), and
(O¢). Therefore, the solution of the optimization problem (9))
given by (8) is the solution of the budget-constrained prob-
lem. Under this equivalence, we show the convexity of the
optimization problem (9). It is sufficient to show that con-
straints (9b) and are convex if the performance func-
tions (7a), and the cost function (3) follow Definition|[T}

We can similarly reduce Problem[2]to a convex optimiza-
tion problem. We can specifically show that the solution of
the performance-constrained problem is given by (8)), where



Optimal Resource Allocation for Dynamic Product Development Process via Convex Optimization

x={x:}I_, andy = {y; }]_, solve the following convex op-
timization problem

minimize ¥
xy¥

n

subject to log Y P(T)< logP,

i=1
T T
log ) B} (xi,y) <log (¥ + Y B, |,
k=1 k=1
log ¢ < xi <log i,
log ¥ijx < yijx <10g%; -

We omit the proof of this statement because it is similar to
the one for the budget-constrained problem.
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