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Abstract—This paper studies the displacement control of the
tilt-controlling axial-gap self-bearing motor with single stator. We
first work out with the state space description for the motor. To
design the control strategy, we adopt Linear-Quadratic-Gaussian
(LQG) control to design the balance controller. It is known to us
that the selection of matrices Q and R are always determined
autonomously, which in terms results to less than perfect control
performance in real applications. To overcome this situation, we
propose an off-line data-based optimizer to replace the matrices
selection process by using fruit fly optimization algorithm (FOA).
Finally, the effectiveness of our results are verified through the
comparison with LQG by simulation experiments.

Index Terms—Axial-gap magnetic self-bearing motor, displace-
ment control, data-driven, iterative learning optimization, LQG,
fruit fly algorithm.

I. INTRODUCTION

Magnetic bearing motor has been regraded as a class of high
performance actuator for the merits of non-mechanical friction,
high efficiency, and high speed request when compared with
mechanical bearing motor [1]. Since the magnetic bearing
motor can rotate at a very high speed, a plenty of research
results can be found in medical care and industry. For example,
the artificial heart powered by such kind of motor has been
used to supply blood for human [2]. Another real application
that the levitation driving rotation speed can be controlled even
up to 7600r/min [3].

Since the complex structure of original magnetic bear-
ing motor wherein several couples of magnetic bearings are
equipped [4], the manufacturing price is high and its ap-
plication is constrained. To overcome this problem, a new
type called axial-gap self-bearing motor (ASBM) has been
developed to reduce the number of bearings, which in turn
leads to a simpler and smaller construction as well as less
control difficulty. Compared with traditional magnetic bearing
motors, ASBM is combined by a disk motor and an axial
magnetic bearing with the inherited two radial magnetic bear-
ings. However, the ASBM can be realized in the form of
either electromagnet motro or permanent-magnet motor [5].
Recently, permanent-magnet motors are more popular for its
larger capacity on generating electromagnetic power. More-
over, ASBM allows us to create a magnetic field in the air
gap, which means that no field excitation winding, zero power

dissipation, and easy math modeling [6]. Besides these, with
increased demand on miniaturization of equipment [3], high
running stability [4, 7], and noise reduction, many efforts has
been devoted to developing new control methods [8].

Proportional-Integral-Derivative (PID) control is first used
in magnetic bearing motor control, demonstrates a great per-
formance on stable levitation and smooth angular slewing
capability even if it is a multiple-input multiple-output linear
system [8]. Actually, axial and radial position of the levitated
rotor is controlled by currents or voltages along the d-axis
and q-axis with a PID feedback loop [9, 10]. The use of
linear control methods to nonlinear problems is not very easy
to achieve satisfied performance. To efficiently deal with the
nonlinear property, disturbance, and uncertainties [11] of the
physical equipment, robust sliding mode control, sliding mode
control to stabilize the current and speed to the desired tar-
get [12]. Another approach of nonlinear control called partial
feedback linearization that aims at to reduce the impact of
the majority of nonlinear parts of nonlinear model, where the
whole model can be combined from building the math model
on each coordinates [13]. Beside these, a multi-variable state
feedback control with Karman Filtering has been proposed to
address the problem of model linearization and coils error [14].

However, the studies mentioned above mainly reported the
double stator-type permanent magnet motor. To make the
structure more streamlined, single stator-type self-bearing mo-
tor has been proposed, which exhibits excellent position con-
trol and can rotate up to the critical speed by PID control [15].
It is clear that ASBM system is a typical multi-input/output
and coupled nonlinear system. Although design the displace-
ment PID controller separately to control the force on each
axial works, the coupled dynamics can still give impact on
the control performance. Thus, consider the controller design
problem as a whole is essential and still an open problem. For
these reasons, in this paper, Linear–quadratic–Gaussian (LQG)
control is adopted as the main structure of controller design.

In this paper, we first build the state-space model from
the original physical dynamics of ASBM, wherein the tilt
control currents are selected as the input to control radial
displacements and radial rotation angles. Then, LQG is used
in designing the state feedback gain for stabilizing the states



on x-axial and y-axial. However, there exists the fact that the
manually selected matrices Q and R of the LQG control can
affect the result on state feedback, especially when the control
object has the high dimensions. In this case, the selecting
process based on the input and output data becomes a NP-
hardness problems [16] in control system design. To bridge
this gap, we design a data-driven optimizer to iterative learning
the selecting process of LQG matrices, where there optimizer
is designed by fruit fly optimization algorithm (FOA) [17]. as
well as against disturbance and noises of the system.

The main contribution can be summarized as follows:

1) Build the controller design model in the form of state
space and design the LQG displacement controller.

2) Design a data-based optimizer for off-line selecting the
matrices Q and R, which in turn lead to the better
performed feedback matrix of LQG controller.

II. MATHEMATICAL MODEL

In this section, we start by introducing the structure of
the magnetic bearing motor and its difficulty in displacement
control. As the contribution, we propose that the dynamic
model can be expressed in state space model.

From the references [4, 5], we know that the displacement
of this kind of magnetic motor is determined by the torques on
X-Y directions and the corresponding tilt angles. In details,
one has the same poles as the motor and is known as motor
current, while the other is known as tilt control current and
has plus or minus two poles that differ from the motor. Fig. 1
shows the structure of the the single stator ASBM, where six
concentrated windings and an iron core are attached to the
upper side of the permanent magnetic for generating the forces
for keeping the rotor suspended on X-Y axis and the rotational
torque on Z-axis. The sensors are equipped for measuring the
displacements labeled on Fig. 1.

Fig. 1. Structure of a tilt-controlling ASBM

The equivalent current distribution of the rotor magnet is
assumed to be sinusoidal, and stator current distribution are
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Fig. 2. Generation of moments and forces for 2-pole rotor

Fig. 3. Top view of rotor

divided into a axis and b axis as shown by Fig. 3. The current
on each phase is defined by

iPr(θ) = IPr sin θ

iPa(θ) = IPa sin θ

iPb(θ) = −IPb cos θ

where IP∗ and θ denote the amplitude and phase of the current.
Then, the magnetic flux density distribution by the current can



be expressed as

BPr(θ) =
4µ0N

g0
IPr cos θ

BPa(θ) =
4µ0N

g0
IPa cos θ

BPb(θ) =
4µ0N

g0
IPb sin θ

where µ0 is the permeability of air, N is equivalent turn
number of windings, and g0 is the air gap between the stator
and rotor. Let B2(θ) = B2r(θ) + B2a(θ) + B2b(θ) and
B4(θ) = B4r(θ) +B4a(θ) +B4b(θ), the whole magnetic flux
distribution can be shown as B(θ) = B2(θ) + B4(θ). Then,
the magnetic force of small area ∆S can be expressed as

∆FM =
B(θ)2

2µ0
∆S =

B(θ)2

2µ0

S

2π
dθ.

Therefore, the axial force is expressed as

Fz =
4µ0SN

2

g20

(
(I2r + I2a)

2 + I22b + (I4r + I4a)
2 + I24b

)
,

where I2a, I2b, and I2r are the currents of a-winding, b-
windind and rotor of 2-pole, while I4a, I4b, and I4r are the
currents for 4-pole, respectively. Then, the tilt torques can be
obtained by

Ta =
4µ0rSN

2

g20
(I2rI4b − I4rI2b + I2aI4b − I4aI2b)

Tb =
4µ0rSN

2

g20
(−(I2a + I2r)(I4a + I4r)− I2bI4b) .

Since the motor torque and radial forces are proportional to
the Lorentz force, we obtain the magnetic forces

Tz =
4µ0SN

2

g0
(I2rI2b + 2I4rI4b)

Fa =
3µ0SN

2

g0r
(I2rI4a − I4rI2a −

I2rI4r
3

+
I2aI4a

3
+
I2bI4b
3

)

Fb =
3µ0SN

2

g0r
(I2rI4b + I4rI2b +

I2aI4b
3
− I4aI2b

3
).

Then, we let axial force current be iz and motor current be
im generated in the situation of 2-pole. From Fig. 2 4-pole
current generates radial forces and tilt torques. Since the tilt
currents ita and itb can be seen as intermediate currents, we
transform them into the x-y axial by itx and ity . Then, the
transformation is given by

I2a
I2b
I4a
I4b

 =


1 0 0 0
0 1 0 0
0 0 sinψ − cosψ
0 0 cosψ sinψ



iz
im
itx
ity

 .

In reality, I2r is much larger than other currents that it can be
ignored. Then, we have

Fx ≈−
3µ0SN

2

g0r
(I2r +

iz0
3
)ity ≡ −Krity

Fy ≈
3µ0SN

2

g0r
(I2r +

iz0
3
)itx ≡ Kritx

Tx ≈
4µ0rSN

2

g20
(I2r + iz0)itx ≡ Ktitx

Ty ≈
4µ0rSN

2

g20
(I2r + iz0)ity ≡ Ktity

where iz0 is approximated value of forces and torques, Kr is
the current stiffness coefficient of Fx and Fy , and Kt is the
current stiffness coefficient for Tx and Ty . Let the distance
from the center of gravity be zg . For simplicity, gyroscopic
effect are neglected. Thus, the radial motions of 2-pole case
can be expressed as

mẍ1 =−Krpx1 − (Krpzgθx1 +Krity )

mẍ2 =−Krpx2 + (Krpzgθx2 +Kritx)

Ir θ̈x1 =Krpzgy + (Ktn −Krpz
2
g)θx1 + (Kt −Krzg)itx

Ir θ̈x2 =−Krpzgx+ (Ktn −Krpz
2
g)θx2 + (Kt −Krzg)ity,

(1)
where x1 and x2 are the displacement of x-axis and y-axis,
respectively. θx1 and θx2 are the tilt angle of x-axis and y-axis.
m is the weight of the rotor, Ir is the inertia of radial axis, Ktn

is negative stiffness for tilt motion, and Krp is passive stiffness
for the radial motion. Let the input vector be u = [itx ity ]

⊤,
state vector be x = [x1 x2 ẋ1 ẋ2 θx1 θx2 θ̇x1 θ̇x2]

⊤, and
output vector be y = [x1 x2 θx1 θx2]

⊤, The model introduced
in (1) can be formulated in the linear system{

ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + w(t),
(2)

where the state, input, and output matrix derived from (1) are
illustrated as

A =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−
Krp
m 0 0 0 0 −

Krpzg

m 0 0

0
Krp
m 0 0

Krpzg

m 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0
Krpzg

Ir
0 0

Ktn−Krpz2g
Ir

0 0 0

−
Krpzg

Ir
0 0 0 0

Ktn−Krpz2g
Ir

0 0


B⊤ =

[
0 0 0 Kr

m 0 0
Kt−Krzg

Ir
0

0 0 −Kr
m 0 0 0 0

Kt−Krzg
Ir

]

C =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 .
v(t) and w(t) are the Gaussian system noise and addi-
tive white Gaussian measurement noise, respectively. Since
the rank of the controllability matrix of system (2)
Rank[B AB . . . An−1B] = 8, the full row rank result allows
us to design the LQG controller.



III. CONTROL ALGORITHMS DESIGN

Following on up from the control target and difficulty
introduced in Section II, in this section, we finish the LQG
controller for stabilizing the displacement on x-y axis. To
resolve the deficiency on manually selecting the Q and R
matrices which in turn leads to the negative impact on con-
trol performance, we propose a data-driven iterative learning
optimizer for efficiently calculating the feedback gain of LQG.

A. LQG control

We start by define performance index of model (2)

J = E
[∫ ∞

0

(x(t)⊤Qx(t) + u(t)⊤Ru(t))dt

]
(3)

where E denotes the expected value, and Q(t) and R(t) are
weighting coefficients related to state variables and control
variables, respectively. The LQG controller that solves the
LQG control problem is specified by the following equations:

˙̂x(t) = Ax̂(t) +Bu(t) + L(t)(y(t)− Cx̂(t)), x̂(0) = E[x(0)]
u(t) = −Kx̂(t),

(4)
where L(t) is called the Kalman gain of the associated Kalman
filter. Combining the equations (3), (4), and (5), we can obtain
the Kalman gain through the following associated matrix
Riccati differential equation:

Ṗ (t) = AP (t) + P (t)A⊤ − P (t)C⊤W−1(t)CP (t) + v(t)

P (0) = E[x(0)x⊤(0)].
(5)

Given the solution P (t), the Kalman gain equals

L(t) = P (t)C⊤(t)W−1(t).

The matrix the feedback gain matrix K(t) is obtained by

−Ṡ(t) = A⊤S(t) + S(t)A− S(t)BR−1B⊤S(t) +Q.

Given the solution S(t), the feedback gain equals

K(t) = R−1B⊤S(t).

B. Data-driven iterative learning optimizer design by FOA

It is well known to us that the feedback gain matrix obtained
from LQG depends on the manually selected matrices Q and
R. In real application problems, many references have reported
that improving the performance by manually selecting Q and
R will be an exploded computation. For this reason, we adopt
a simple structure but high computing efficiency intelligent
optimization method called fruit fly optimization algorithm
to design an iterative learning optimizer for automatically

computing the optimized Q and R. Let i denote the index
of the group with the total G generations. We have

Xi = Xaxis + rand(dim(X))

Yi = Yaxis + rand(dim(Y ))

Di =
√
X2

i + Y 2
i , Si = 1/Di

Si =


λ11 λ12 · · · λ1G

...
... · · ·

...
λ81 λ82 · · · λ8G
µ11 µ12 · · · µ1G

µ21 µ22 · · · µ2G

 ,
(6)

where Si determines the elements of Q and R and is sub-
stituted into the Riccati equation computing the optimized
feedback gain. Suppose there exists M groups of fruit fly, j
index of iteration of M . Let ∆xj ,∆yj , ∆θxj

, and ∆θyj
be the

increments on the state variables, the errors generated in the
total iterations were counted by using the standard deviation

ϵj =

√√√√ G∑
j=1

∆x2j +

G∑
j=1

∆y2j +

G∑
j=1

θ2xj +

G∑
j=1

θ2yj

N =

G∑
j=1

(∆xj +∆yj +∆θxj +∆θyj ).

We define that the value of ith fruit fly as Si,and the average
value of all fruit flies can be expressed as

xi =

∑n
i=1 Si

N

where N is the number of fruit flies. The standard deviation
of this group of flies can be expressed as

σ2 =

∑n
i=1(Si − xi)2

N
.

When the standard deviation is too high, it indicates that the
current result is inadequate and that the step size should be
increased to increase the searching speed. Otherwise, when the
standard deviation is too small, it indicates that the system is
approaching the convergence stage. As a result, the step size
should be reduced to prevent premature convergence. On the
other hand, keeping the step size in a large range, increases
the risk of falling into a local optimum while allowing the
results to converge quickly. A step size that is too small will
cause the iteration to be very slow. As a result, we define the
step size as

ℓi+1 =



ℓi +
lnσ2

N
, σ2 ≥ 1,

ℓi +
lnσ2(N − 1)

N
, 0.08 ≤ σ2 < 1,

ℓi, 0.01 ≤ σ2 < 0.08,

ℓi tan
π

L+ 6
, σ2 < 0.01,

where ℓi+1 is the (i+1)th searching step. However, a random
function is used to initialize the first batch of fruit flies,



however after the second time, a different method will be used
to update the population’s position. The flavour concentration
value for each round Si will depend on the distance of
the population to the origin Di and can be regarded as
Si = D−1

i . However Si is a matrix with high dimensionality
and determines the Qi,j and Ri,j . Then, the Riccati equation
in each round of iterations can be expressed as Although we
control the parameters of the ith iteration through Si, it is clear
that the underfitting parameters can not necessarily work well
for the (i+1)th iteration. Thus, in the ith iteration, an adaptive
function is used to update the values of the matrix Si, with
the adaptation based on the smallest error value ϵi,j of the
radial displacements and rotation angles with respect to the
coordinate axis. The algorithm is shown as as the following
block diagram Fig. 4.

Motor
-K

Kalman 

filter

𝑢(𝑡)

+

+

𝜖

Iterative 

learning 

optimizer

FOA
𝓁𝑖

𝑆𝑖 𝓁𝑖+1
+

𝜐(𝑡)

𝑦(𝑡)
𝜔(𝑡)

+

Fig. 4. Block diagram of the data-driven iterative learning based LQG

IV. SIMULATION EXPERIMENTS

In this section, we verify our proposed results by numer-
ical simulation. Table I illustrates the initialization of the
model and FOA algorithm. Fig. 5 shows the trajectories of
the optimzation process of the elements on matrices Q and
R. To get apparent observations, the initial state is set by
x(0) = [0.5, 0.5, 0, 0, 0.5, 0.5, 0, 0]. It is clear to see that the
values converges to a constant value as the number of iterations
G increases. To illustrate the strengths of data-driven learning
algorithm over normal LQG, we list the manually selected
Q and R matrices as the initialization of data-driven learning
algorithm, and the optimization solution is also listed as below:

diag(Q) = [0.94, 0.56, 0.37, 0.68, 0.55, 0.84, 0.21, 1.02]

diag(R) = [0.5, 0.7]

diag(Q̄) = [0.09, 0.09, 0.16, 0.10, 0.10, 0.81, 0.40, 0.16]

diag(R̄) = [0.11, 0.07].

Fig. 6 shows the trajectories of the control variables, where
the conclusion can be drawn that the data-driven iterative
learning based optimizer offers the better parameter matrices
Q and R for the LQG feedback gain design.

Algorithm 1 Environmental Selection
Input: Group number M , Initial step size ℓ, last turn of step

size ℓi, random initial position coordinates X1, Y1.
Output: Q, R;

1: Initialize Xaxis, Yaxis
2: for i = 1; i ≤M ; i← i+ 1 do
3: if i == 1 then
4: Xi = Xaxis + rand(dim(X))
5: Yi = Yaxis + rand(dim(Y ))
6: else
7: Xi = Xaxis + 2ℓi × rand(dim(X))− ℓi
8: Yi = Yaxis + 2ℓi × rand(dim(Y ))− ℓi
9: end if

10: Di =
√
X2

i + Y 2
i

11: Si = 1/Di, Si is affected by the error of the previous
population, acting on the next iteration of the population

12: Execute iterative learning optimizer
13: if thenBestSmell < SmellBest
14: SmellBest = BestSmall
15: BestIndex = Index
16: end if
17: end for
18: [Q, R]=find(BestIndex)

Algorithm 2 Iterative Learning Optimizer
Input: Iteration number G, Step size ℓi
Output: BestSmell, ℓi+1, N .

1: for j = 1; j ≤ G; j ← j + 1 do
2: Update ∆xj ,∆yj ,∆θxj ,∆θxj
3: Calculate the error ϵj
4: [BestSmell, Index] = ϵj
5: Updating the generation of fruit fly N
6: Update the step of next population ℓi+1

7: end for

V. CONCLUSION

In this paper, we first formulate the model where the coupled
property of the ASBM is regarded as a whole problem. Since
the PID controllers can not well address the coupled state
variables, we resort to LQG control as well as handling
the noise filtering problem. To optimize and accelerate the
process of calculating the selection of Q and R, we proposed
a data-driven iterative learning optimizer by FOA. As the
future research, the online data-driven algorithms should be
investigated, and the real physical experiment ASBM device
will be used for verifying the effectiveness on real life cases.
Another topic is to apply our results to double-stator ASBM.
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